
Finding the Shortest Path  
A* Algorithm

Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Motivation
• Greedy Best-First may not be suitable

• graph has lots of local maxima traps

• want to guaranty the shortest route

• our heuristic didn't take actual cost into account

• let's upgrade Dijkstra's algorithm instead

• add a heuristic

A*
• pronounced " 'A' star "

• 1968 extension to Dijkstra's algorithm

• PE Hart, NJ Nilsson, B Raphael, "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths", IEEE
Trans. Systems Science and Cybernetics, 1968

• commonly used in path finding / path planning

• video games, robot motion

• good performance + optimal path

Reference Material

• Amit Patel's website is amazing (animated)  
 
http://www.redblobgames.com/pathfinding/a-star/
introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html
http://www.redblobgames.com/pathfinding/a-star/introduction.html

A*
• actual cost of path so far + estimated cost to goal

• f(n) = g(n) + h(n)

• This helps avoid local maxima traps

• Investigates fewer vertices than Dijkstra

• May be slower than Greedy Best-First

• But guarantees shortest path

heuristics
• create function h(n) which gives a numerical guess

to rate choices (which node to try next)

• Manhattan Distance - count city blocks and and
across

• Q. why is this commonly used again?

• make sure heuristic function always returns a value
larger than the actual cost or distance - why?

Cost
• g(n) is the actual cost e.g.

• distance to the next node

• + the distance on the path so far

• so for each frontier node

• f(n) = path cost + Manhattan Distance to goal

• keep frontier choices in a priority queue

• insertion sort?

• frontier can get quite big

Demo
• Grid/tile environment for my graph

• Assumed you can't move diagonally

• Walls (node can't be entered)

• Every move has cost g(n) = 1 + path so far

• Heuristic h(n) = distance to goal across + down

• Used our ppm writing code to output image at each step

• source code: 
https://github.com/capnramses/data_structures_algorithms

https://github.com/capnramses/data_structures_algorithms

goal

start

walls

frontier - brighter red = higher priority

so the next node investigated is…

grey is investigated

each investigated node also has pointer to its parent
i didn't draw this in the output

like Dijkstra and Greedy BFS - when goal found  
follow arrows back

Animation Time

work from goal along parents:
optimal path is shown in blue

moving diagonally would have reduced grey visited area

frontier gets quite large compared to  
Greedy Best-First

Variations
• Commonly used for video games and robotics

• may not consider fine detail

• can't handle dynamic obstacles

• doors opening

• people running into the road

• motion path is very robotic-looking

• perception of virtual characters

• may not obey physical constraints like momentum of a car

• if path to goal is long - may need to limit depth

Making a .gif / video
• Output image for each step as numbered filename

• i used 50x50 pixels for each graph node (bigger for-loops)

• 00001.ppm, 00002.ppm, 00003.ppm

• PPM big in MB - PNG would be better

• consider Sean Barrett's stb_image_write.h

• Can use The GIMP to open the series as layers

• export as .gif

• lots of big files = runs out of memory

• I used Image Magick tools to convert my numbered sequence to a .gif

• command-line convert tool

• Mac can install with HomeBrew

Variations
• D* - dynamic (nodes can represent on/off state for doors etc)

• Multiple levels of detail grid

• plan route across country

• high-resolution path around local obstacles

• Pair with other reactive system for precision steering

• i used fuzzy controllers

• interpolate between points / splines

• less robotic / smoother animations

